59 research outputs found

    Including general environmental effects in K-factor approximation for rice-distributed VANET channels

    Full text link
    © 2014. This paper presents a method of approximating the Rician K-factor based on the instantaneous static environment. The strongest signal propagation paths are resolved in order to determine specular and diffuse powers for approximation. The model is experimentally validated in two different urban areas in New South Wales, Australia. Good agreement between the model and experimental data was obtained over short-range communication links, demonstrating the suitability of the model in urban VANETs. The paper concludes with recommendations for methods to account for vehicles in the simulation and incorporating additional phenomena (such as scattering) in the approximation

    Mapping the evidence of the effects of environmental factors on the prevalence of antibiotic resistance in the non-built environment: Protocol for a systematic evidence map

    Get PDF
    Background: Human, animal, and environmental health are increasingly threatened by the emergence and spread of antibiotic resistance. Inappropriate use of antibiotic treatments commonly contributes to this threat, but it is also becoming apparent that multiple, interconnected environmental factors can play a significant role. Thus, a One Health approach is required for a comprehensive understanding of the environmental dimensions of antibiotic resistance and inform science-based decisions and actions. The broad and multidisciplinary nature of the problem poses several open questions drawing upon a wide heterogeneous range of studies. Objective: This study seeks to collect and catalogue the evidence of the potential effects of environmental factors on the abundance or detection of antibiotic resistance determinants in the outdoor environment, i.e., antibiotic resistant bacteria and mobile genetic elements carrying antibiotic resistance genes, and the effect on those caused by local environmental conditions of either natural or anthropogenic origin. Methods: Here, we describe the protocol for a systematic evidence map to address this, which will be performed in adherence to best practice guidelines. We will search the literature from 1990 to present, using the following electronic databases: MEDLINE, Embase, and the Web of Science Core Collection as well as the grey literature. We shall include full-text, scientific articles published in English. Reviewers will work in pairs to screen title, abstract and keywords first and then full-text documents. Data extraction will adhere to a code book purposely designed. Risk of bias assessment will not be conducted as part of this SEM. We will combine tables, graphs, and other suitable visualisation techniques to compile a database i) of studies investigating the factors associated with the prevalence of antibiotic resistance in the environment and ii) map the distribution, network, cross-disciplinarity, impact and trends in the literature.This work was supported by funding from the European Union’s Horizon 2020 Research and Innovation programme under grant agreement No 773830: One Health European Joint Programme. The funder had no role in the development of this protocol.info:eu-repo/semantics/publishedVersio

    VIDIIA Hunter: a low-cost, smartphone connected, artificial intelligence-assisted COVID-19 rapid diagnostic platform approved for medical use in the UK

    Get PDF
    Introduction: Accurate and rapid diagnostics paired with effective tracking and tracing systems are key to halting the spread of infectious diseases, limiting the emergence of new variants and to monitor vaccine efficacy. The current gold standard test (RT-qPCR) for COVID-19 is highly accurate and sensitive, but is time-consuming, and requires expensive specialised, lab-based equipment.Methods: Herein, we report on the development of a SARS-CoV-2 (COVID-19) rapid and inexpensive diagnostic platform that relies on a reverse-transcription loop-mediated isothermal amplification (RT-LAMP) assay and a portable smart diagnostic device. Automated image acquisition and an Artificial Intelligence (AI) deep learning model embedded in the Virus Hunter 6 (VH6) device allow to remove any subjectivity in the interpretation of results. The VH6 device is also linked to a smartphone companion application that registers patients for swab collection and manages the entire process, thus ensuring tests are traced and data securely stored.Results: Our designed AI-implemented diagnostic platform recognises the nucleocapsid protein gene of SARS-CoV-2 with high analytical sensitivity and specificity. A total of 752 NHS patient samples, 367 confirmed positives for coronavirus disease (COVID-19) and 385 negatives, were used for the development and validation of the test and the AI-assisted platform. The smart diagnostic platform was then used to test 150 positive clinical samples covering a dynamic range of clinically meaningful viral loads and 250 negative samples. When compared to RT-qPCR, our AI-assisted diagnostics platform was shown to be reliable, highly specific (100%) and sensitive (98–100% depending on viral load) with a limit of detection of 1.4 copies of RNA per µL in 30 min. Using this data, our CE-IVD and MHRA approved test and associated diagnostic platform has been approved for medical use in the United Kingdom under the UK Health Security Agency’s Medical Devices (Coronavirus Test Device Approvals, CTDA) Regulations 2022. Laboratory and in-silico data presented here also indicates that the VIDIIA diagnostic platform is able to detect the main variants of concern in the United Kingdom (September 2023).Discussion: This system could provide an efficient, time and cost-effective platform to diagnose SARS-CoV-2 and other infectious diseases in resource-limited settings

    Leveraging the Propagation Model to Make Greedy Routing Decisions in Urban Environments

    Full text link
    © 2017 IEEE. The CORNER propagation model, first proposed in 2010, has been previously validated and found to be a reasonably accurate representation of propagation scenarios in urban Vehicular Ad Hoc Networks (VANETs). This paper considers the impact of the propagation environment on routing performance and reveals a pressing need to consider more accurate propagation models when designing urban VANET routing protocols. A greedy routing protocol, which uses CORNER's propagation estimates for neighbour selection, is then presented. The new protocol, named Corner Propagation Stateless Routing (CPSR) is compared to GPSR, a benchmark protocol for VANETs, showing between 87% and 300% improvement in packet delivery ratio at higher network loads

    Dynamie environmental fading in urban VANETs

    Full text link
    A method of approximating the Rician K-Factor with considerations of the local human-built environment is proposed for urban VANETs. The model is validated experimentally on a busy street in Australia, in the presence and absence of other vehicles. The model is found to accurately predict actual channel measurements in close-range communications scenarios. © 2014 IEEE
    corecore